148 research outputs found

    Phase lapses in scattering through multi-electron quantum dots: Mean-field and few-particle regimes

    Get PDF
    We show that the observed evolution of the transmission phase through multi-electron quantum dots with more than approximately ten electrons, which shows a universal (i.e., independent of N) as yet unexplained behavior, is consistent with an electrostatic model, where electron-electron interaction is described by a mean-field approach. Moreover, we perform exact calculations for an open 1D quantum dot and show that carrier correlations may give rise to a non-universal (i.e., N-dependent) behavior of the transmission phase, ensuing from Fano resonances, which is consistent with experiments with a few (N < 10) carriers. Our results suggest that in the universal regime the coherent transmission takes place through a single level while in the few-particle regime the correlated scattering state is determined by the number of bound particles.Comment: 14 pages, 3 figures, RevTex4 preprint format, to appear in Phys. Rev.

    Landau levels, edge states and magneto-conductance in GaAs/AlGaAs core-shell nanowires

    Get PDF
    Magnetic states of the electron gas confined in modulation-doped core-shell nanowires are calculated for a transverse field of arbitrary strength and orientation. Magneto-conductance is predicted within the Landauer approach. The modeling takes fully into account the radial material modulation, the prismatic symmetry and the doping profile of realistic GaAs/AlGaAs devices within an envelope-function approach, and electron-electron interaction is included in a mean-field self-consistent approach. Calculations show that in the low free-carrier density regime, magnetic states can be described in terms of Landau levels and edge states, similar to planar two-dimensional electron gases in a Hall bar. However, at higher carrier density the dominating electron-electron interaction leads to a strongly inhomogeneous localization at the prismatic heterointerface. This gives rise to a complex band dispersion, with local minima at finite values of the longitudinal wave vector, and a region of negative magneto-resistance. The predicted marked anisotropy of the magneto-conductance with field direction is a direct probe of the inhomogeneous electron gas localization of the conductive channel induced by the prismatic geometry

    Exact two-body quantum dynamics of an electron-hole pair in semiconductor coupled quantum wells: a time-dependent approach

    Get PDF
    We simulate the time-dependent coherent dynamics of a spatially indirect exciton (an electron-hole pair with the two particles confined in different layers) in a GaAs coupled quantum well system. We use a unitary wave-packet propagation method taking into account in full the four degrees of freedom of the two particles in a two-dimensional system, including both the long-range Coulomb attraction and arbitrary two-dimensional electrostatic potentials affecting the electron and/or the hole separately. The method has been implemented for massively parallel architectures to cope with the huge numerical problem, showing good scaling properties and allowing evolution for tens of picoseconds. We have investigated both transient time phenomena and asymptotic time transmission and reflection coefficients for potential profiles consisting of i) extended barriers and wells and ii) a single-slit geometry. We found clear signatures of the internal two-body dynamics, with transient phenomena in the picosecond time-scale which might be revealed by optical spectroscopy. Exact results have been compared with mean-field approaches which, neglecting dynamical correlations by construction, turn out to be inadequate to describe the electron-hole pair evolution in realistic experimental conditions.Comment: 12 two-column pages + 3 supplemental material pages, 9 figures, to appear on Phys.Rev.

    Symmetries in the collective excitations of an electron gas in core-shell nanowires

    Get PDF
    We study the collective excitations and inelastic light scattering cross-section of an electron gas confined in a GaAs/AlGaAs coaxial quantum well. These system can be engineered in a core-multi-shell nanowire and inherit the hexagonal symmetry of the underlying nanowire substrate. As a result, the electron gas forms both quasi 1D channels and quasi 2D channels at the quantum well bents and facets, respectively. Calculations are performed within the RPA and TDDFT approaches. We derive symmetry arguments which allow to enumerate and classify charge and spin excitations and determine whether excitations may survive to Landau damping. We also derive inelastic light scattering selection rules for different scattering geometries. Computational issues stemming from the need to use a symmetry compliant grid are also investigated systematically

    Space- and time-dependent quantum dynamics of spatially indirect excitons in semiconductor heterostructures

    Get PDF
    We study the unitary propagation of a two-particle one-dimensional Schr\"odinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolution during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.Comment: 28 pages, 10 figures, preprint forma

    Revisiting Shared Data Protection Against Key Exposure

    Full text link
    This paper puts a new light on secure data storage inside distributed systems. Specifically, it revisits computational secret sharing in a situation where the encryption key is exposed to an attacker. It comes with several contributions: First, it defines a security model for encryption schemes, where we ask for additional resilience against exposure of the encryption key. Precisely we ask for (1) indistinguishability of plaintexts under full ciphertext knowledge, (2) indistinguishability for an adversary who learns: the encryption key, plus all but one share of the ciphertext. (2) relaxes the "all-or-nothing" property to a more realistic setting, where the ciphertext is transformed into a number of shares, such that the adversary can't access one of them. (1) asks that, unless the user's key is disclosed, noone else than the user can retrieve information about the plaintext. Second, it introduces a new computationally secure encryption-then-sharing scheme, that protects the data in the previously defined attacker model. It consists in data encryption followed by a linear transformation of the ciphertext, then its fragmentation into shares, along with secret sharing of the randomness used for encryption. The computational overhead in addition to data encryption is reduced by half with respect to state of the art. Third, it provides for the first time cryptographic proofs in this context of key exposure. It emphasizes that the security of our scheme relies only on a simple cryptanalysis resilience assumption for blockciphers in public key mode: indistinguishability from random, of the sequence of diferentials of a random value. Fourth, it provides an alternative scheme relying on the more theoretical random permutation model. It consists in encrypting with sponge functions in duplex mode then, as before, secret-sharing the randomness

    Magneto-photoluminescence in GaAs/AlAs core-multishell nanowires: a theoretical investigation

    Get PDF
    The magneto-photoluminescence in modulation doped core-multishell nanowires is predicted as a function of photo-excitation intensity in non-perturbative transverse magnetic fields. We use a self-consistent field approach within the effective mass approximation to determine the photoexcited electron and hole populations, including the complex composition and anisotropic geometry of the nano-material. The evolution of the photoluminescence is analyzed as a function of i) photo-excitation power, ii) magnetic field intensity, iii) type of doping, and iv) anisotropy with respect to field orientation.Comment: 11 pages, 11 figures, accepted for publication in Physical Review

    Effect of the Coulomb interaction on the electron relaxation of weakly-confined quantum dot systems

    Get PDF
    We study acoustic-phonon-induced relaxation of charge excitations in single and tunnel-coupled quantum dots containing few confined interacting electrons. The Full Configuration Interaction approach is used to account for the electron-electron repulsion. Electron-phonon interaction is accounted for through both deformation potential and piezoelectric field mechanisms. We show that electronic correlations generally reduce intradot and interdot transition rates with respect to corresponding single-electron transitions, but this effect is lessened by external magnetic fields. On the other hand, piezoelectric field scattering is found to become the dominant relaxation mechanism as the number of confined electrons increases. Previous proposals to strongly suppress electron-phonon coupling in properly designed single-electron quantum dots are shown to hold also in multi-electron devices. Our results indicate that few-electron orbital degrees of freedom are more stable than single-electron ones.Comment: 20 pages (preprint format), 7 figures, submitted to Phys. Rev.

    Phonon-induced electron relaxation in weakly-confined single and coupled quantum dots

    Get PDF
    We investigate charge relaxation rates due to acoustic phonons in weakly-confined quantum dot systems, including both deformation potential and piezoelectric field interactions. Single-electron excited states lifetimes are calculated for single and coupled quantum dot structures, both in homonuclear and heteronuclear devices. Piezoelectric field scattering is shown to be the dominant relaxation mechanism in many experimentally relevant situations. On the other hand, we show that appropriate structure design allows to minimize separately deformation potential and piezolectric field interactions, and may bring electron lifetimes in the range of microseconds.Comment: 20 pages (preprint format), 7 figures, submitted to Physical Review

    Field-controlled suppression of phonon-induced transitions in coupled quantum dots

    Full text link
    We calculate the longitudinal-acoustic phonon scattering rate for a vertical double quantum dot system with weak lateral confinement and show that a strong modulation of the single-electron excited states lifetime can be induced by an external magnetic or electric field. The results are obtained for typical realistic devices using a Fermi golden rule approach and a three-dimensional description of the electronic quantum states.Comment: REVTex4 class, 6 pages, 3 figures, to be published in Applied Physics Letter
    • …
    corecore